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Multi-task Learning with Variational Autoencoders
for Semi-supervised Sound Event Detection

Petros Giannakopoulos, Aggelos Pikrakis

Abstract—In this work we present a multi-task learning model,
based on recurrent variational autoencoders (VAEs), for semi-
supervised sound event detection. The proposed method employs
recurrent VAEs with shared parameters to simultaneously learn
the tasks of strong labeling, weak labeling and feature sequence
reconstruction. During the training stage, the model receives
as input strongly labeled, weakly labeled, and unlabeled data.
It simultaneously optimizes frame-based and clip-based cross-
entropy losses for strongly labeled and weakly labeled data,
respectively, as well as the reconstruction loss for the unlabeled
data. Using a shared posterior among all task branches, the
model projects the input data for each task into a common latent
space. The decoding of latents sampled from this common latent
space, in combination with the shared parameters among task
branches act jointly as a regularizer that prevents the model
from overfitting to the individual tasks. When evaluated on
the DCASE-Task4 2022 dataset, our proposed semi-supervised
learning method achieves an event-based macro F1 score of
31.8% on the public evaluation set, versus 12.4% achieved by
pure supervised learning. It also achieves a segment-based macro
F1 score of 60.6% versus 38% achieved by pure supervised
learning.

Index Terms—sound event detection, multi-task learning, vari-
ational autoencoder, semi-supervised learning

I. INTRODUCTION

SOUND Event Detection (SED) is the process of identify-
ing sounds in the environment, such as a human speaking,

a dog barking, a vaccum cleaner etc. [1]. Figure 1 provides
an overview of an SED system used to automate this process.
Besides the understanding of the environment that an SED
system provides, it can also be used as feedback to other
systems that are capable of taking actions, as it is the case
with the triggering of an alarm.

A. Neural-based Sound Event Detection Systems

In recent years, neural networks have contributed to notable
improvements in the performance of SED systems. Convo-
lutional Neural Networks (CNNs) [2], [3], Recurrent Neural
Networks (RNNs) [4], [5], Convolutional RNNs (CRNNs)
[6], [7] and Transformers [8], [9], [10] have been used
with success as the backbone of SED systems. The main
drawback of neural-network based approaches is that a large
amount of labeled data is required during a supervised training
stage. There are two main SED variations, i.e., strong and
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Fig. 1. Overview of a Sound Event Detection (SED) system. An SED system
receives audio as input and outputs annotations of the audio events present in
the audio. Each annotation usually contains the audio event label along with
the beginning (onset) and end (offset) timestamps of the event.

weak audio event tagging. In the case of strong tagging, an
SED system must detect both the audio event type and the
respective endpoints. In the case of weak tagging, the SED
system must only detect the presence of the audio event. The
strong tagging task requires audio data to be annotated with
timestamps that provide the beginning and end of each audio
event occurrence, as shown in Figure 1. This type of data,
known as strongly labeled data, are difficult, time-consuming
and costly to collect in amounts that are sufficient to effectively
train neural-network based approaches via supervised learning.
Emphasis has therefore been placed on developing training
methods which reduce the requirements for strongly annotated
data, while remaining effective. These range from simple
data augmentation techniques to weakly-supervised and semi-
supervised learning methods. Data augmentation has proved
to be an effective technique to improve the generalization
capabilities of SED models by performing random or targeted
processing on existing data to artificially generate new data
samples [2], [3]. Furthermore, several SED model architec-
tures and training schemes have been proposed which can take
advantage of weakly labeled and/or unlabeled data to improve
generalization while reducing the requirements for strongly
labeled data [8], [11], [12].

B. Multi-Task Learning

Multi-Task Learning (MTL) [13] is a method where a
model can learn to solve multiple tasks simultaneously, while
exploiting possible common characteristics and differences
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Fig. 2. Overview of the architecture of our proposed MTL-VAE architecture. Input feature sequences for each task are encoded into a shared latent representation
by variational encoders with shared weights. Decoders with shared weights perform the tasks of audio event classification, at a frame-level and clip-level, as
well as frame-level audio feature reconstruction. Each encoder and each decoder is constructed from stacks of residual recurrent blocks with self-attention,
where x and y are the input and output sequences respectively.

across them. Such a model can achieve improved performance
on each individual task compared to a model that learns to
solve each problem in isolation. MTL has been applied to
the domain of weakly-supervised and semi-supervised SED
[14], [15], [16] with promising results. Previous works have
combined MTL with Variational Auto-Encoders (VAEs) [17],
[18], [19], [20] and showed that, in the domains of image
and sentiment classification, projecting input features for each
task into latent representations sampled from the posterior of
a variational encoder can improve regularization of shared
features for downstream tasks and is more robust to noise and
outliers in the input features.

C. Contribution

In this work we propose an SED model, based on the
MTL-VAE principle and RNNs, trained in a semi-supervised
manner. We achieve this by simultaneously training the model
on three audio event tagging tasks, each having its own dataset
as provided by DCASE-Task4 2022 [21], [22]: strong tagging
on synthetic audio data, weak tagging on real audio data
and strong tagging on real audio data. The model is also
simultaneously trained on a fourth task: reconstruction of
unlabeled audio features. We demonstrate that the model is
able to leverage cross-task information to achieve superior
performance on the task of strong audio event tagging on real
data, which is the task of interest, compared to the case when
it is trained on this task without MTL. We also demonstrate
that using a VAE architecture improves generalization perfor-
mance. Our MLT-VAE SED model achieved a 32.5% event-

based macro F1 score and a 60.6% segment-based macro F1-
score on the DCASE-Task4 2022 validation set. On the public
evaluation set it achieved a 31.8% event-based macro F1-score
and a 60.6% segment-based macro F1-score. We did not use
any data augmentation during training.

II. PROPOSED METHOD

In this section we: A) define the architecture of our MTL-
VAE model, B) describe how we train the MTL-VAE model,
for the purpose of SED, in a semi-supervised manner, and C)
outline the evaluation method of the trained MTL-VAE SED
system.

A. Network architecture

The proposed MTL-VAE architecture for SED is demon-
strated in Figure 2. It consists of a variational encoder for
each task input and all encoders share weights. The resulting
outputs of the variational encoders are shared stochastic latent
representations of the input feature sequences of all down-
stream tasks. The latent representations are inputs to decoders
with shared weights, with each decoder being responsible for
a respective task. Each decoder is followed by a classification
head which outputs either frame-level predictions for the
strong audio event tagging or clip-level predictions for the
weak tagging tasks. The classification head consists of a feed-
forward layer, with number of units equal to the number of
audio event classes, followed by a sigmoid activation function.
Therefore, the predictions are the probability for each audio
event class being present in the frame or clip. The outputs of
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TABLE I
COMPOSITION OF DCASE-TASK4 2022 TRAINING SET

Data Audio Clips

Synthetic with strong labels 10,000
Real with weak labels 1,578
Real without labels 14,412
Real with strong labels (Audioset) 3,195

the decoder responsible for the weak tagging task are averaged
over the sequence length, via an AveragePooling1D operation,
to obtain clip-level predictions. The decoder responsible for
the frame-level reconstruction task is followed by a feature se-
quence reconstruction head. The reconstruction head consists
of one feed-forward layer per frame in the feature sequence,
with number of units equal to the number of features, followed
by a linear (identity) activation function.

All encoders and decoders are made up of residual recurrent
blocks with self-attention. The input sequence x to each block
is passed through a self-attention layer [23]. The resulting
attention weights are concatenated with x and passed through
bi-directional Gated Recurrent Unit (GRU) layers [24]. The
recurrent layers outputs are added together with input x,
resulting in the final output sequence y = f(x) of the block.

B. Training procedure

1) Data pre-processing: The training set of the DCASE-
Task4 2022 dataset contains: a) 10,000 synthetic audio clips
with strong labels, b) 1,578 real audio clips with weak labels,
c) 14,412 real audio clips without labels, and d) 3,195 real
audio clips with strong labels. The training set composition
is summarized in Table I. The validation set of the DCASE-
Task4 2022 dataset contains 1,152 real audio clips with strong
labels, used for evaluating the accuracy of the model on the
task of strong audio event tagging. Since no explicit validation
sets are provided for the other types of data, we withheld 5%
of the audio clips of each data type as validation data for the
task associated with that data type. For the data pre-processing
stage, we first converted all audio clips into a 1-channel, 16-bit
format, at a 16 kHz sampling rate. For each audio clip, we then
removed the direct current (DC) component and normalized
the loudness of the audio to -3 dBFS [25]. We then extracted
a spectrogram from each audio clip using an FFT window
length of 2048 samples and a hop length of 384 samples,
resulting in a feature sequence of 417 frames for a 10-second
audio clip. We performed zero-padding of shorter audio clips,
where needed. The inputs to our proposed model are 128-
dimensional log-mel filterbanks that we extracted from each
spectrogram. We then performed zero-mean and unit variance
normalization over the feature sequences in the training data.

2) Training objective: For the concurrent training on all
four tasks, the final objective L that the model must optimize
for is the sum of four objectives, one for each task. Specif-
ically: a) frame-level cross-entropy for the strong synthetic
audio event tagging task (BCEs), b) clip-level cross-entropy
for the weak real audio event tagging task (BCEw), c) frame-
level cross-entropy for the strong real audio event tagging task

(BCEs), and d) L2 reconstruction error for the unlabeled data
reconstruction task (L2u). To that sum we must add e) the
KL-divergence objective (KLD) between the posterior of the
VAE and a Gaussian prior N(0, 1). The KLD term is added
to the final objective with a weight β. This is done in order
to be able to control the strength of the regularization applied
to the posterior, similar to [26]. Based on the above, the final
objective is:

L = 2 ∗BCEs +BCEw + L2u + β ∗KLD (1)

with:
BCEs =

1

T
[ys log xs + (1− ys) log xs] (2)

where xs, ys are sequences of label vectors with shape T ×
classes,

BCEw = yw log xw + (1− yw) log xw (3)

where xw, yw are label vectors of length classes,

L2u = (xu − yu)
2 (4)

where xu, yu are sequences of feature vectors with shape T ×
dims,

KLD =
∑
x∈X

P (x) log
P (x)

Q(x)
(5)

where X = xs ∪ xw ∪ xu, P (x) a distribution over strong la-
beled, weak labeled, and unlabeled data, and Q(x) a Gaussian
distribution prior.

3) Training parameters: We use the Adam optimizer [27]
with a learning rate of 5 ∗ 10−4 and a batch size of 32. Each
batch contains randomly sampled synthetic audio data with
strong labels, real audio data with weak labels, real unlabeled
audio data, and real audio data with strong labels from the
Audioset dataset [28] in a 1:1:1:1 ratio. Since there is an
unequal number of audio clips available for each type of audio
data, we perform oversampling of under-represented audio
data types to achieve the 1:1:1:1 ratio for every batch during
a training epoch. We also chose β = 1e−4 after a coarse grid
search. We set a hidden state size of 256 units for every GRU
layer. We use the segment-based and event-based macro F1-
scores as the metrics for validating the model’s performance
during training on each of the 3 classification tasks, along with
L2 for validating the performance on the 4th reconstruction
task. The metrics are calculated every training epoch.

C. Evaluation

The public evaluation set of DCASE-Task4 2022 contains
692 clips of real audio with strong labels. After training for
100 epochs we keep the best performing model, according to
the segment-based and event-based macro F1-scores achieved
on the validation set for the strong event tagging task. We
only keep the branch (encoder-decoder pair) responsible for
the strong event tagging task and prune away the other task
branches, as they are not needed beyond the training stage.
Following that, we get the resulting model’s strong predictions
on the entire public evaluation set and calculate the segment-
based and event-based macro F1-scores.
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TABLE II
EVENT-BASED AND SEGMENT-BASED MACRO F1-SCORES WITH VARIOUS TYPES OF DATA USED FOR TRAINING

Validation Public evaluation
Data used EB-F1 [%] SB-F1 [%] EB-F1 [%] SB-F1 [%]

Synthetic only 12.6 31.4 12.4 38.0
Synthetic + weak 11.0 48.4 11.2 52.5
Synthetic + weak + unlabeled 12.5 50.9 11.6 54.4
Synthetic + weak + unlabeled + Audioset 32.5 60.6 31.8 60.6
Audioset only 19.8 41.8 18.5 37.6

TABLE III
PERFORMANCE COMPARISON BETWEEN USING DETERMINISTIC AND VARIATIONAL ENCODERS

Validation Public evaluation
Encoder type EB-F1 [%] SB-F1 [%] EB-F1 [%] SB-F1 [%]

Deterministic 28.6 59.1 27.2 59.7
Variational 32.5 60.6 31.8 60.6

TABLE IV
CLASS-WISE EVENT-BASED AND SEGMENT-BASED F1-SCORES

Validation Public evaluation
Audio event class EB-F1 [%] SB-F1 [%] EB-F1 [%] SB-F1 [%]

Alarm bell ringing 36.9 72.4 31.3 67.0
Blender 43.9 65.1 36.0 58.9
Cat 29.7 51.7 43.0 62.9
Dishes 16.5 36.2 20.1 37.5
Dog 12.0 51.7 14.7 66.9
Electric shaver/toothbrush 41.3 63.1 25.4 53.4
Frying 27.1 57.8 35.1 62.8
Running water 31.1 64.7 20.7 44.3
Speech 50.0 81.5 50.1 80.7
Vacuum cleaner 36.1 61.3 41.2 71.9

Average 32.5 60.6 31.8 60.6

III. EXPERIMENTS

In this section we: A) define the performance metrics used
to measure the classification performance of an SED system,
B) define the post-processing applied to the predictions of
an SED system, C) present the results of our experiments
when using MTL to improve the classification performance
of an SED system by leveraging additional types of data,
D) experimentally assess the advantage of using variational
instead of deterministic encoders in the MTL model to further
improve generalization, E) analyze the class-wise performance
of our MTL-VAE SED system on the DCASE Task4 dataset.

A. Performance Metrics
As per [21], the audio event classification performance of

our proposed SED system is evaluated using event-based and
segment based macro F1-scores. The event-based F1-score is
calculated with a 200 ms collar on the onsets and a collar on
the offsets that is the greater of 200 ms and 20% of the sound
event’s length. The overall F1-score is the unweighted average
of the class-wise F1-scores (macro-average). The segment-
based F1-score is calculated on audio segments of 1 s duration.
The metrics are computed using the sed eval library [29].

B. Post-processing
Before calculating the F1-scores, we apply a classification

threshold of 0.5 to the system audio event class probability

outputs. We also apply median filtering to the frame-level class
probability outputs, with a window size of 19 frames (or 456
ms), in order to remove impulse false positive/negative detec-
tions. The optimal values for the threshold and median filtering
window size were selected via grid search. More sophisticated
methods for optimizing the post-processing applied to the
predictions of sound event detectors, such as proposed in [30],
could further improve audio event classification performance.

C. Effects of Multi-Task Learning

The results of our experiments are summarized in Table II.
We conduct an ablation study to assess the impact of each
additional learned task to the performance of the multi-task
model.

We observe that when the model is only trained for strong
event tagging on synthetic audio data with strong event labels,
it has the worst scores on the classification metrics with an
event-based macro F1-score of 12.6% and a segment-based
macro F1-score of 31.4% on the validation set, as well as
12.4% and 38.0% respectively on the public evaluation set.

Adding the task of weak event tagging on real audio data
with weak event labels improves the segment-based F1-score
to 48.4% and 52.5% on the validation and public evaluation
sets respectively, but the event-based F1 score does not im-
prove.
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Further adding the task of reconstruction of unlabeled audio
data improves the segment-based F1-score to 50.9% and
54.4% on the validation and public evaluation sets, respec-
tively.

Finally, the addition of the task of strong event tagging
on real audio event data with strong event labels (from the
Audioset dataset) significantly improves the event-based F1-
score to 32.5% on the validation set and 31.8% on the public
evaluation set. The segment-based F1-score further improves
to 60.6% on both sets. This most likely occurs because the
real audio dataset with strong event labels and, consequently,
the task of strong event tagging on real audio data have
the closest domain proximity to the validation and public
evaluation datasets, which are also real audio data with strong
event labels. Therefore, it is not a surprise that this task has the
largest contribution to the information extracted by the MTL
model.

However, when training only on the Audioset data and
learning only the task of strong event tagging on real audio
data, the final performance is significantly lower than when
training on all tasks using all types of data. The event-
based F1-score drops to 19.8% and 18.5% on the validation
and public evaluation sets respectively, while the segment-
based F1-score becomes 41.8% and 37.6%, respectively. This
underlines the effectiveness of MTL and that all 4 data types
and their respective tasks contribute to the ability to learn more
robust representations that generalize better.

D. Contribution of VAEs

In Table III we also conduct an ablation study comparing the
event-based and segment-based macro F1 scores achieved on
the validation and public evaluation sets, by our MTL model,
when each encoder is deterministic and when it is variational.
Using a variational encoder leads to an improvement in the
event-based F1 score of approximately 4% and an improve-
ment of 1% in the segment-based F1 score. We conclude that
this is due to the better generalization ability of the variational
autoencoder architecture. Introducing stochasticity into the
latent representations of each encoded task data features and
constraining the shared latent space to be close to a Gaussian
prior leads to improved regularization of learned task data
representations.

E. Class-wise performance

Table IV shows the event-based and segment-based F1-
scores per audio event class achieved by the final MTL-
SED model, trained on all 4 tasks. The results for both the
validation and public evaluation sets of DCASE-Task4 2022
are presented. There is a total of 10 classes of audio events
present in the dataset.

IV. CONCLUSION

In this work we designed a Multi-Task Learning (MTL)
model for Sound Event Detection (SED), based on a residual
recurrent autoencoder architecture with variational information
bottleneck. We applied this MTL-SED model to the challenge

of learning to detect and classify audio events when only
a limited amount of annotated training data is available, as
outlined in DCASE-Task4. For each of the four types of
data provided by the DCASE-Task4 dataset, we assigned
a task to be learned: strong audio event tagging from the
synthetic audio data with strong event labels, weak audio
event tagging from the real audio data with weak event labels,
reconstruction of real unlabeled data from the provided real
audio data without annotations, and strong audio event tagging
from the real audio data with strong event labels. The model
is trained simultaneously on all tasks and has the ability
to exploit cross-task information through parameter (weight)
sharing between the autoencoders appointed to each task and
through projecting the encoded features for each task data
into a shared latent space. We then demonstrate that this
MTL scheme significantly improves the model’s classification
accuracy, as measured by the event-based and segment-based
macro F1 scores, in the validation and public evaluation
datasets of DCASE-Task4, with each additional learned task
contributing to improving the model’s final performance. We
also found that introducing stochasticity into the shared latent
representations, by using variational instead of deterministic
encoders further improves classification performance through
better cross-task generalization, since the stochasticity intro-
duced into latent representations acts as a regularizer.

As future work, we would replace the residual recurrent
block with a transformer-based architecture. Transformer mod-
els have recently demonstrated strong performance in SED
[31] and we believe it would be interesting to also assess the
performance of an MTL model, based on transformer building
blocks, on the task of semi-supervised SED.
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